Product Information

Krytox™ TS4 thread sealant, the solution for demanding applications, is designed for use on a variety of metal and plastic surfaces.

Key Benefits

- Unlike PTFE tape, which should be removed before re-application, Krytox™ TS4 can be re-applied over existing Krytox™ thread sealant.
- Clings to threads and will not shred or tear on assembly/disassembly.
- Cannot plug or restrict critical piping, valves, or instruments like tape solids.
- Krytox™ TS4 is non-reactive, non-toxic, nonflammable, non-corrosive and compatible with most seal, O-ring, and valve polymers.
- No VOC content or hydrocarbon in the product; safe for oxygen use with no auto-ignition temperatures.
- Cost-effective—only a small amount of sealant needed per application.
- Fast and easy to apply, even while wearing protective gloves.
- Operating temperature range of −54–149 °C (−65–300 °F).
- Tested leak free under helium at 400 psi for 7 days.*

* Users should complete testing in their process and conditions to determine suitability.

- Safe for use: The Chlorine Institute (Pamphlet 164) rates Krytox™ lubricants a “1.”
- Lubricates threads, preventing costly thread damage from galling and seizing during assembly. Allows low breakaway torque for easy-to-break connections.

Suggested Krytox™ TS4 Thread Sealant Application Procedures

- Clean all pipe and fitting threads with a non-chlorinated solvent to remove cutting/protective oil and chase threads with stiff wire brush to remove burrs, debris, and old sealant (PTFE tape, pipe dope, anaerobic resin, etc.).
- Check pipe and fittings against ASNI/ASME guideline B.20.1-1983 to meet specifications for proper fit and engagement.
- Construct piping systems following all applicable ANSI/ASME codes.
- Apply Krytox™ TS4 to fill the male threads evenly, up to the recommended engagement length from the ANSI/ASME guideline. DO NOT OVERTIGHTEN.
<table>
<thead>
<tr>
<th>Project</th>
<th>Pipe Thread Sealant Leak Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealant</td>
<td>Krytox™ TS4</td>
</tr>
<tr>
<td>Leak Check Gas</td>
<td>Helium</td>
</tr>
<tr>
<td>Result</td>
<td>PASS</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure, psig</td>
</tr>
<tr>
<td>Day 1</td>
<td>400</td>
</tr>
<tr>
<td>Day 2</td>
<td>400</td>
</tr>
<tr>
<td>Day 3</td>
<td>400</td>
</tr>
<tr>
<td>Day 4</td>
<td>400</td>
</tr>
<tr>
<td>Day 5</td>
<td>400</td>
</tr>
<tr>
<td>Day 6</td>
<td>400</td>
</tr>
<tr>
<td>Day 7</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>398</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>401</td>
</tr>
</tbody>
</table>

Note: Pressure fluctuations due to temperature change.

Due to its small atomic size, helium passes easily through leaks, and it is an industry standard for a tracer gas used to find leaks.

Krytox™ TS4 is conveniently available in 0.5, 2, and 8 oz tubes, 0.5 kg jars, and other size containers available upon request.

Krytox™ lubricants have been used in contact with the following chemicals, in addition to many others not listed:

- Acetone
- Acrylic Resins
- Alcohol
- Acetylene
- Hydrocarbon Oils
- Ammonia
- Ammonium Nitrate
- Aniline
- Aqueous Caustic
- Benzene
- Boiling Sulfuric Acid
- Brake Fluids
- Bromine
- Butadiene
- Butane
- Butylene
- Carbon Dioxide
- Carbon Monoxide
- Carbon Tetrachloride
- Chlorine, Liquid or Gas
- Chlorine Trifluoride
- Chloroform
- Compressed Air
- Dichlorosilane
- Dimethylether
- Diesel Fuel
- Dihexylmethyamine
- Ester Oils
- Ethane
- Ethanol
- Ethyl Alcohol
- Ethyl Chloride
- Ethylene
- Ethylene Glycol
- Ethylene Oxide
- Fluorine
- Formaldehyde
- Gasoline
- Helium
- Heptane
- Hexafluoropropylene
- Hexene
- Hydrobromic Acid
- Hydrocarbon Compounds
- Hydrocyanic Acid
- Hydrochloric Acid
- Hydrofluoric Acid
- Hydrogen
- Hydrogen Bromide
- Hydrogen Chloride
- Hydrogen Peroxide
- Hydrogen Sulphide
- Iodine
- Isopropyl Alcohol
- JP 4 and 8 Turbine Fuel
- Lithium Glycer
- Methane
- Methanol
- Methylamine
- Methylchloride
- Methylbromide
- Methylmercaptan
- Methylene Oxide
- Mineral Acids
- Monosilane
- Molten Caustic
- Natural Gas
- Nitric Acid
- Nitrogen
- Nitrogen Oxide
- Nitrogen Oxides
- Nitrogen Trifluoride
- Nitrotrifluorine
- Nitrous Oxide
- (Anesthesia)
- Organic Acids
- Organic Compounds
- Oxygen, Liquid or Gas
- Ozone
- Pentane
- Polyalphaolefin
- Potassium Chloride
- Potassium Hydroxide
- Perchloroethylene
- Phosphoric Acids
- Phosgene
- Polyalkylene Glycols
- Polyphosphate
- Polyoil Ester Oils
- Polypropyleneoxide (PPO)
- Potassium Hydroxide
- Perchloroethylene
- Potassium Permanganate
- Propane
- Propylene
- Red Fuming Nitric Acid
- Silicone Products
- Sodium Hydroxide
- Sulfur Hexafluoride
- Sulfuric Acid
- Sulfur Oxides
- Unsymmetrical Dimethyl Hydrazine
- Uranium Hexafluoride
- Trifluoroacetylchloride
- Trimethylethylamine
- Vinyl Chloride
- Vinyl Bromide
- Vinyl Fluoride
- Water, Steam

The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Because conditions of product use are outside our control, Chemours makes no warranties, express or implied, and assumes no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents. No part of this material may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of Chemours.

For more information, visit krytox.chemours.com. For sales and technical support contacts, visit krytox.chemours.com/globalsupport. © 2015 The Chemours Company FC LLC. Krytox™ and any associated logos are trademarks or copyrights of The Chemours Company FC LLC. Chemours™ and the Chemours Logo are trademarks of The Chemours Company. C-10551 (12/15)